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ABSTRACT 
It is proposed in this paper to use a small portion of the audio speech signal to estimate Signal-to-Noise Ratio 

(SNR). It is found that, the first 30 ms duration has enough information about the SNR in advance. The first 30 

ms of a recorded speech usually comes from the silence rather than speech. This is because the speaker usually 

starts the recording process or wait for it before he/she can deliver the utterance. For testing and comparing the 

proposed estimator, different noisy corpora are built upon the TIMIT data. The average estimation of the 

suggested algorithm proves to get better results as compared to the Waveform Amplitude Distribution Analysis 

(WADA) and the National Institute of Standard and Technology (NIST) SNR estimators. The complexity of the 

STS-SNR estimator is less than both as it only processes a small portion of the audio samples. 
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I. INTRODUCTION 
The signal-to-noise ratio (SNR) estimation 

algorithms has been investigated deeply and used for 

different applications. They could be used to 

improve speech enhancement, detection and 

recognition algorithms in different ways [1]. Those 

estimators usually use all signal samples to compute 

the SNR. For some applications, it isenough to know 

if the signal has high or low SNR in order to do 

further operations on the speech signal for better 

recognition accuracy as in [2], [3] and [4]. Many of 

the SNR estimation approaches are based on either a 

pre-specified weighting factor or preceding 

assumptions of some parameters in the signal model 

[5]. The spoken utterance SNR is a ratio between the 

power of two random signals, the speech and the 

noise. This phenomenon of variability and 

randomness behavior makes the SNR estimation 

more difficult to investigate [6]. 

The National Institute of Standard and 

Technology NIST developed a well-known SNR 

estimator NIST-STNR [7]. It uses the entire speech 

signal by framing it to 20 ms frames to estimate the 

histogram of the root-mean square (RMS) of the 

power. Those frames are 50% overlapped among 

each other, then used for histogram updates. When 

the audio is finished, the resulting power histogram 

will be analyzed so that the 15% of the total area 

from the left represents the noise while the 85% of 

the area from the left of the histogram represents the 

signal [8]. 

 

 

 

 

 
Figure 1: NIST-STNR Estimation using RMS 

power Histogram [8] 

 

The NIST algorithm tries to separate the 

high and the low power of the audio signal using the 

its probability density function (PDF). It is supposed 

that, the noise and signal PDF boundaries lies in the 

selected regions with higher probability. 

While the power PDF is the key for NIST 

SNR estimator, there is another approach of 

examining the amplitude PDF as in the Waveform 

Amplitude Distribution Analysis (WADA-SNR) 

algorithm in [1]. This approach is based on the 

assumption that the clean speech amplitude has 

proximately a symmetrical Gamma distribution 

function. According to Kim and Stern in [1], when a 

white Gaussian noise is added to the clean speech 

there will be a unique parameter Gz that can 

determine SNR. 

The researchers used a pre-calculated 

lookup table to store the Gz parameterfor different 

SNRs. It is important to note that although the 

WADA-SNR approach assumes that the noise has 
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Gaussian distribution, the empirical results shows 

that it has superiority over the NIST-STNR even for 

other types of noise like background speech and 

music as shown in the figure 2[1]. 

 

 
a- Results with WADA-SNR 

 

 
b- Results with NIST-SNR 

Figure 2: Comparison of the average SNR estimates 

between WADA and NIST SNR algorithms on 

DARPA-RM database [1] 

 

The rest of the paper will explain the 

proposed Short-Time Silence SNR estimator (STS-

SNR). A comparison of the simulation results 

between the suggested STS-SNR algorithm with the 

WADA and NIST-STNR approaches is in section 3, 

while section 4 will is dedicated for the conclusion 

and future works. 

 

II. THE SHORT-TIME SILENCE SNR 

ESTIMATOR 
Based on what has been discussed in the 

previous section, an SNR estimator cannot give its 

results unless all the audio signal samples are 

processed. Those full-audio length approaches 

would seize the resources for some real-time live 

audio applications, like Automatic Speech 

Recognition (ASR). The suggested algorithm is to 

process only a small amount of samples from the 

audio signal to guess the SNR. The proposed 

algorithm is refereed as the Short-Time Silence 

(STS-SNR) estimator, which will consider only the 

first 30 ms at the beginning of the audio. This 

estimator assumes that the first 30 ms of the tested 

audio represents silence rather than speech. It is 

more realistic to have this consideration as the 

speaker cannot deliver his/her utterance within the 

first 30 ms. It is also assumed in this research that 

the SNR is not changing during the time of interest. 

The proposed Short-Time Silence SNR 

(STS-SNR) estimator is described by the following 

steps: 

1. Take the first 30 ms duration directly after the 

microphone is on, which is denoted here as the 

Noise Frame NFrame. 

2. Subtract the mean of the NFrame 

3. Estimate the Power Spectral Density (PSD) of 

the NFrame using Fast-Fourier Transform (FFT) 

of 512 points and taking only 0 to 8 kHz band in 

consideration. Where PSD for the 30 ms NPSD 

is: 

𝑁𝑃𝑆𝐷 =  𝑁𝐹𝑟𝑎𝑚𝑒  𝜔  2  (1) 

Where 𝑁𝐹𝑟𝑎𝑚𝑒 (𝜔) is the spectrum of the audio 

frame. 

4. Reform the PSD by taking the absolute 

difference of its flipped version to produce a 

white-like PSD using the following process: 

𝑁𝑅𝑒𝑓𝑜𝑟𝑚𝑒𝑑 =  𝑁𝑃𝑆𝐷 − 𝑁𝑃𝑆𝐷
𝑇   (2) 

here, 𝑁𝑃𝑆𝐷
𝑇  is the flipped version of the noise power 

spectral density vector 𝑁𝑃𝑆𝐷 . 

5. Take the average of the first and last quarter of 

the 8 kHz band of the NReformed. The average of 

those quarters is then considered as the 

estimated noise power spectral density 𝑁 𝑃𝑆𝐷 . 

6. The estimated SNR in dB is: 

𝑆𝑁𝑅𝑑𝐵 = 𝑜𝑓𝑓𝑠𝑒𝑡 − 10 × log10(𝑁 𝑃𝑆𝐷) (3) 

 

As non-white noise is also expected, the 

NPSD is reformed in step 4 to produce a white-like 

PSD. This step will eliminate the effect of some 

colored noise that might appear while preserve the 

white noise PSD. In figure 3, the NReformed is shown 

for a speech that was sampled by 16KHz sampling 

rate and has an additive blue noise that made the 

SNR 10 dB. 

 

 
(a) PSD before reforming 



Azhar S. Abdulaziz.et al. Int. Journal of Engineering Research and Application         www.ijera.com 

ISSN : 2248-9622, Vol. 6, Issue 8, ( Part -1) August 2016, pp.99-103 

 www.ijera.com                                                                                                                               101|P a g e  

 
(b) PSD after reforming 

Figure 3: The reforming operation in step 4 

 

The measured pauses in a music concert are 

an ambient noise of 30 dB in advance as each 

frequency band contributes a different amount of dB 

power [9]. Hence, step 5 is designed to estimate the 

maximum contribution of each frequencyband by 

averaging the reformed spectrum from step 4. The 

NPSD in the final stepshows to change linearly with 

the SNR of the speech utterance. However, there is 

an offset of the estimator mean from the real mean. 

Experiments on different SNR noisy speech 

showed that the offset in equation (3) is not varying 

with the SNR. It was found that use of value 23 as 

an offset to get minimum error for different kinds 

and levels of noise. This exact value of the offset is 

estimated by the minimum sum of square error 

(SSE) and the minimum mean absolute error (MAE) 

as depicted in figure 4. 

Experiments on the TIMIT test data and the 

NOIZEUS [10] show that this offset in equation 3 

would be 23 dB as it gave the minimum for both the 

Sum of Square Error (SSE) and the Mean Absolute 

Error (MAE) as shown in figure 4 below. 

 

 
(a) SSE for different Offsets 

 
(b) MAE for different offsets 

Figure 4: Testing different offsets for NFrame of 

NOIZEUS noisy speech at 15 dB SNR 

 

The offset value in equation (3) represents 

the minimum power gap between the moderate 

speech and the faint noise. So that the speech is 

differentiated from the noise by the speaker and his 

audience. It is common for a speaker to raise his 

vocal power to compete the ambient noise energy at 

least to hear himself, and by doing so allowing the 

target audience to hear clearly. According to Gordon 

J. King in [9], the Faint Noise starts by the 20 dB 

Sound Pressure Level (SPL) for whisper and goes up 

to 40 dB SPL for public library noise. The moderate 

speech lies in a pressure region of what he called 

Moderate Noise which is between 40 and 60 dB SPL 

[9]. Any increase in the faint noise will make the 

speaker, who aims to speak moderately, to increase 

his utterance power to compete the additional noise. 

Therefore, the constant offset of 23 in equation 3 

seems to be reasonable and close to theory. 

 

III. SIMULATION RESULTS 
The STS-SNR estimator was evaluated 

using the DARPA TIMIT [11] and the noisy speech 

corpus NOIZEUS that is described in [10]. 

However, as the latter corpus speech and noise 

signals were filtered by the modified Intermediate 

Reference System (IRS) filters, an additional pre-

processing was needed to be applied for getting the 

un-filtered spectrum. 

By comparing the average estimated SNR 

of the WADA, NIST-STNR and the proposed STS-

SNR, it seems that the latter has a better response. 

Figure 5 explains that the proposed STS-SNR is 

closer to the ideal case in average for NOIZEUS 

corpus. 
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Figure 5: The average estimated SNR comparison 

for NOIZEUS corpus. 

 

The audio of the TIMIT corpus is recorded 

in a quiet room environment [12], therefore different 

types of noise are added to it throughout this work. 

Additive White Gaussian Noise (AWGN), blue and 

pink are artificially computed and added to the 

TIMIT audio. Besides, crowd babble noise is also 

considered, where a crowd of people speaking 

randomly together. Both artificial and crowd babble 

noise are added to make noisy TIMIT of SNR ranges 

from 5 to 50 dB with 5 dB steps. 

For white, pink and blue artificial additive 

noise, the STS-SNR shows to be a better SNR 

estimator than the other two approaches. Figure 6 

below shows the comparison for the TIMIT corpus 

with white noise only as the responses due to pink 

and blue noise types have the same pattern. 

 

 
Figure 6: White Noise estimated SNR using TIMIT 

corpus 

 

For babble crowd TIMIT the mean 

estimated SNR was almost better using the proposed 

STS-SNR compared with the WADA and the NIST-

STNR, as shown in figure 7. 

 
Figure 7: Crowd Babble Noise estimated SNR using 

TIMIT corpus. 

 

The WADA-SNR has a good estimation 

when the SNR is less than 20 dB. However, when 

the test is run over higher noise levels, the proposed 

STS-SNR shows an advantage over the WADA 

approach. The results in figures 5 and 6 shows that 

the proposed STS-SNR estimator has an effective 

true mean detection in average. 

Meanwhile, for the test cases below 20 dB 

SNR, the STS-SNR has shown to give a higher 

deviation from the mean, when it is compared with 

the WADA algorithm. As shown in figure 8 below, 

for SNR below 20 dB, the Mean Absolute Error 

(MAE) is higher for NIST-STNR and the proposed 

STS than the WADA approach. However, the MAE 

for STS-SNR is still less than both WADA and 

NIST-STNR in average for the whole range. 

 

 
Figure 8: The MAE Comparison for NIST, WADA 

and STS Estimators. 

 

For the complexity comparison among 

those SNR estimators, the STS-SNR is considered 

less expensive. As the proposed STS-SNR uses only 

30 ms NFrame window of the signal, it is expected to 

perform faster than the NIST and WADA SNR 

approaches. The computational expenses of the three 

estimators were test edusing the Real Time ratio 

(RT) as in the following equation: 

𝑅𝑇 =  
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔  𝑇𝑖𝑚𝑒

𝐴𝑢𝑑𝑖𝑜  𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛
   (4) 
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Table 1 shows a comparison among the 

three SNR estimators, NIST, WADA and the 

proposed STS approach. 

 

Table 1: Average Real-time Ratio for SNR 

Estimators 

SNR Estimator Average RT 

NIST-STNR 0.0182 

WADA-SNR 0.0033 

STS-SNR 0.0026 

 

Those measurements are the average RT’s 

of when the algorithms were tested using the TIMIT 

test corpus of 1680 speech audio files. 

 

IV. CONCLUSION 
The proposed algorithm for the SNR 

estimation has shown to give a close guess to the 

ideal SNR for audio speech. It is less complicated 

and more efficient to expect the SNR in advance. 

The suggested SNR estimator in this paper shows to 

have a higher error for SNR less than 20 dB, as 

compared to the WADA approach. Nevertheless, for 

higher SNRs, the proposed STS algorithm estimates 

the SNR more accurately than the WADA estimator. 

In general, the STS algorithm has an advantage over 

the WADA and the NIST-STNR approaches. Even 

though the WADA estimator is based on extensive 

integration, its complexity is reduced by using the 

offline pre-calculated table [1]. However, as it is 

noted in table 1, the proposed STS-SNR estimator is 

still less expensive than the WADA-SNR. 

The drawbacks of the proposed STS-SNR 

are there should be a 30 ms of silence at the 

beginning and the SNR is not changing. If the noise 

level is changed later, another silence period should 

be considered to re-estimate the new SNR ratio. In 

this case, a Voice Activity Detector (VAD) should 

be used to pick silencesthat occur within the speech 

as well. For Automatic Speech Recognizers (ASR) 

applications, there is another solution. Some of 

modern ASRs, like CMU Sphinx, can detect a 

silence and its samples could be easily extracted. 

This is because silence is treated as a word that 

represent a non-speech event and stored in a filler 

dictionary [13]. In future works, a continuous 

feedback from within-speech silences will be added 

allowing the STS to update the SNR continuously. 
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